

'समानो मन्त्रः समितिः समानी' UNIVERSITY OF NORTH BENGAL B.Sc. Honours 1st Semester Examination, 2021

GE1-P1-PHYSICS

Time Allotted: 2 Hours

Full Marks: 40

 $1 \times 5 = 5$

The figures in the margin indicate full marks. All symbols are of usual significance.

The question paper contains GE-1A and GE-1B. Candidates are required to answer any *one* from the *two* courses and they should mention it clearly on the Answer Book.

GE-1A

MECHANICS

GROUP-A

Answer any *five* questions from the following

- 1. Define the term initial frame of reference.
- 2. Write down the characteristics of a conservative force.
- 3. What do you mean by simple harmonic motion?
- 4. If $\vec{A} = 2\hat{i} 3\hat{j} + 6\hat{k}$ and $\vec{B} = a\hat{i} + \hat{j} + \hat{k}$ are perpendicular to each other, then find the value of *a*.
- 5. State Hooke's law of elasticity.
- 6. Show that the angular momentum of a particle moving under the action of a central force field is conserved.
- 7. Define modulus of rigidity.
- 8. Write down the conditions for over-damped, critically damped and under-damped simple harmonic motion.

GROUP-B

Answer any *three* **questions from the following** $5 \times 3 = 15$

- 9. (a) Find out the area of a parallelogram having diagonals $\vec{A} = 3\hat{i} + \hat{j} 2\hat{k}$ and $\vec{B} = \hat{i} 3\hat{j} 4\hat{k}$.
 - (b) Determine the unit vector which is perpendicular to both the vectors $\vec{A} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{B} = 2\hat{i} - \hat{j}$.

UG/CBCS/B.Sc./Hons./1st Sem./Physics/PHYSGE1/2021

10.	If the external torque $\tau = 0$, then show that angular momentum is conserved. Establish the relation between torque and angular acceleration.	2+3
11.(a)	State Kepler's laws of planetary motion.	3
(b)	Show that areal velocity of a particle moving in a central force field is always constant.	2
12.	Establish the differential equation of simple harmonic motion and find out its general solution.	2+3
13.(a)	Write down the postulates of Einstein's special theory of relativity.	2
(b)	Derive an expression for the resultant velocity for an object moving with velocity V_1 relative to another object moving with velocity V_2 .	3

GROUP-C

	Answer any two questions from the following	$10 \times 2 = 20$
14.(a)	Define Young's modulus (<i>Y</i>), Bulk modulus (<i>K</i>), Poission's ratio (σ) and hence establish the relation $Y = 3K(1 + \sigma)$.	3+4
(b)	Show that the value of Poission's ratio lies between -1 and $+\frac{1}{2}$.	3
15.(a)	If $ \vec{A} + \vec{B} = \vec{A} - \vec{B} $, then prove that \vec{A} and \vec{B} are perpendicular to each other.	2
(b)	If $ \vec{a} = 10$, $ \vec{b} = 1$ and $\vec{a} \cdot \vec{b} = 8$, then find out $ \vec{a} \times \vec{b} $.	3
(c)	Find out $\vec{\nabla} \cdot \vec{A}$ and $\vec{\nabla} \times \vec{A}$ at a point (3, 1, 2), where $\vec{A} = 3\hat{i} + \hat{j} - 4\hat{k}$.	3
(d)	State the work-energy theorem.	2
16.	Derive the consequences of Lorentz transformation on the measurement of length and time.	5+5
17.(a)	The equation of a SHM is $x = a \sin(\omega t + \phi)$. Show that the velocity (v) and acceleration (f) of a particle executing the above harmonic motion satisfies the relation; $\omega^2 - v^2 + f^2 = a^2 \omega^4$.	4
(b)	Derive an expression for the total energy of a harmonic oscillator. Hence, show that it is constant and is proportional to the square of the amplitude.	4+2

GE-1B

THERMAL PHYSICS AND STATISTICAL MECHANICS

GROUP-A

Answer any *five* questions from the following $1 \times 5 = 5$

- 1. What do you mean by mean free path of the molecules of a gas?
- 2. Draw p-V indicator diagram for isobaric and isochoric processes.

1081

UG/CBCS/B.Sc./Hons./1st Sem./Physics/PHYSGE1/2021

- 3. Explain the term microstate.
- 4. What are the limitations of Maxwell-Boltzmann statistics?
- 5. What do you mean by a perfectly blackbody?
- 6. Consider ozone gas at room temperature and atmospheric pressure. What is the value of γ for that gas, where γ is ratio of specific heats at constant pressure and constant volume?
- 7. If the temperature is doubled, then by how many times the r.m.s speed of a gas is increased or decreased?
- 8. What is Boson? Give an example.

GROUP-B

	Answer any three questions from the following	$5 \times 3 = 15$
9. (a)	If the number of degrees of freedom per molecule of a perfect gas is 'x', then show that $\gamma = 1 + 2/x$, where $\gamma = C_P/C_V$.	3
(b)	Calculate the values of γ for monoatomic and diatomic gas.	2
10.(a)	What is meant by 'internal energy' of a system?	1
(b)	Show that, $C_P = T \left(\frac{\partial V}{\partial T}\right)_P \left(\frac{\partial P}{\partial T}\right)_S$	4
	$C_V = -T \left(\frac{\partial P}{\partial T}\right)_V \left(\frac{\partial V}{\partial T}\right)_S.$	
11.(a)	What do you mean by Fermi energy?	2
(b)	Calculate the occupation probability at $2kT$ units of energy above the Fermi energy E_F , where $k =$ Boltzmann constant.	3
12.(a)	What do you mean r.m.s. speed of gas molecules?	1
(b)	Calculate r.m.s. speed from Maxwell-Boltzmann velocity distribution law.	2
(c)	Show that r.m.s. speed is $\sqrt{3}/8$ times the speed of sound, in that medium.	2
13.(a)	What is entropy of a thermo-dynamic system?	1
(b)	100 g water at 60°C is mixed with 30 g of water at 20°C. Calculate the entropy change of the system.	4

GROUP-C

	Answer any two questions from the following	$10 \times 2 = 20$
14.(a)	What is the difference between a heat engine and a refrigerator?	2
(b)	Prove that $\eta = \frac{1}{1+\omega}$, where η is the efficiency of heat engine and α is the co-	2
	efficient of performance of refrigerator.	
(c)	"The lowering of sink temperature (T_2) is more effective in increasing the efficiency of a Carnot engine."	3
	Explain the above observation.	
(d)	A reversible heat engine converts 1/6 th of the heat input into work. If the temperature of the sink is reduced by 62°C, its efficiency is doubled. Find out the temperatures of the source and the sink.	3
15.(a)	Explain the ultraviolet-catastrophe in Rayleigh-Jeans spectral distribution.	2
(b)	Write down Planck's law of radiation. Derive the Rayleigh-Jeans law and Wien's displacement law from Planck's law.	1+4
(c)	Calculate the wavelength of light corresponding to the maximum in the spectral distribution of the sun. Assume that the sun radiates with properties of a blackbody radiator at 600 K.	3
16.(a)	Calculate the Fermi-Dirac distribution function from the Fermi-Dirac statistics.	5
(b)	Calculate the lowest energy of a system of 10 identical particles in a cubical box of side L , using	5
	(i) Boltzmann-Einstein statistics.	
	(ii) Fermi-Dirac statistics.	
17.(a)	Derive the velocity distribution function for a gaseous system that obeys the Maxwell-Boltzmann statistics.	7
(b)	N particles are distributed among three energy states $E_1 = 0$, $E_2 = kT$, $E_3 = 2kT$. If the total energy of the system is $200kT$ find out the value of N.	3

__×____