

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 1st Semester Examination, 2021

GE1-P1-Physics

Time Allotted: 2 Hours
Full Marks: 40
The figures in the margin indicate full marks. All symbols are of usual significance.

The question paper contains GE-1A and GE-1B. Candidates are required to answer any one from the two courses and they should mention it clearly on the Answer Book.

GE-1A

Mechanics

GROUP-A

Answer any five questions from the following

1. Define the term initial frame of reference.
2. Write down the characteristics of a conservative force.
3. What do you mean by simple harmonic motion?
4. If $\vec{A}=2 \hat{i}-3 \hat{j}+6 \hat{k}$ and $\vec{B}=a \hat{i}+\hat{j}+\hat{k}$ are perpendicular to each other, then find the value of a.
5. State Hooke's law of elasticity.
6. Show that the angular momentum of a particle moving under the action of a central force field is conserved.
7. Define modulus of rigidity.
8. Write down the conditions for over-damped, critically damped and under-damped simple harmonic motion.

GROUP-B

Answer any three questions from the following

9. (a) Find out the area of a parallelogram having diagonals $\vec{A}=3 \hat{i}+\hat{j}-2 \hat{k}$ and $\vec{B}=\hat{i}-3 \hat{j}-4 \hat{k}$.
(b) Determine the unit vector which is perpendicular to both the vectors $\vec{A}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{B}=2 \hat{i}-\hat{j}$.

10. If the external torque $\tau=0$, then show that angular momentum is conserved.
 Establish the relation between torque and angular acceleration.

11.(a) State Kepler's laws of planetary motion. 3
(b) Show that areal velocity of a particle moving in a central force field is always constant.

12. Establish the differential equation of simple harmonic motion and find out its
general solution.
13.(a) Write down the postulates of Einstein's special theory of relativity. 2
(b) Derive an expression for the resultant velocity for an object moving with velocity V_{1} relative to another object moving with velocity V_{2}.

GROUP-C

Answer any two questions from the following

14.(a) Define Young's modulus (Y), Bulk modulus (K), Poission's ratio (σ) and hence establish the relation $Y=3 K(1+\sigma)$.
(b) Show that the value of Poission's ratio lies between -1 and $+\frac{1}{2}$.
15.(a) If $|\vec{A}+\vec{B}|=|\vec{A}-\vec{B}|$, then prove that \vec{A} and \vec{B} are perpendicular to each other.
(b) If $|\vec{a}|=10,|\vec{b}|=1$ and $\vec{a} \cdot \vec{b}=8$, then find out $|\vec{a} \times \vec{b}|$.
(c) Find out $\vec{\nabla} \cdot \vec{A}$ and $\vec{\nabla} \times \vec{A}$ at a point $(3,1,2)$, where $\vec{A}=3 \hat{i}+\hat{j}-4 \hat{k}$.
(d) State the work-energy theorem.
16. Derive the consequences of Lorentz transformation on the measurement of length and time.
17.(a) The equation of a SHM is $x=a \sin (\omega t+\phi)$. Show that the velocity (v) and acceleration (f) of a particle executing the above harmonic motion satisfies the relation; $\omega^{2}-v^{2}+f^{2}=a^{2} \omega^{4}$.
(b) Derive an expression for the total energy of a harmonic oscillator. Hence, show that it is constant and is proportional to the square of the amplitude.

GE-1B

Thermal Physics and Statistical Mechanics
 GROUP-A

Answer any five questions from the following

1. What do you mean by mean free path of the molecules of a gas?
2. Draw $p-V$ indicator diagram for isobaric and isochoric processes.

UG/CBCS/B.Sc./Hons./1st Sem./Physics/PHYSGE1/2021

3. Explain the term microstate.
4. What are the limitations of Maxwell-Boltzmann statistics?
5. What do you mean by a perfectly blackbody?
6. Consider ozone gas at room temperature and atmospheric pressure. What is the value of γ for that gas, where γ is ratio of specific heats at constant pressure and constant volume?
7. If the temperature is doubled, then by how many times the r.m.s speed of a gas is increased or decreased?
8. What is Boson? Give an example.

GROUP-B

Answer any three questions from the following

9. (a) If the number of degrees of freedom per molecule of a perfect gas is ' x ', then show that $\gamma=1+2 / x$, where $\gamma=C_{P} / C_{V}$.
(b) Calculate the values of γ for monoatomic and diatomic gas.
10.(a) What is meant by 'internal energy' of a system?
(b) Show that, $C_{P}=T\left(\frac{\partial V}{\partial T}\right)_{P}\left(\frac{\partial P}{\partial T}\right)_{S}$

$$
C_{V}=-T\left(\frac{\partial P}{\partial T}\right)_{V}\left(\frac{\partial V}{\partial T}\right)_{S}
$$

11.(a) What do you mean by Fermi energy? 2
(b) Calculate the occupation probability at $2 k T$ units of energy above the Fermi energy E_{F}, where $k=$ Boltzmann constant.
12.(a) What do you mean r.m.s. speed of gas molecules?
(b) Calculate r.m.s. speed from Maxwell-Boltzmann velocity distribution law. 2
(c) Show that r.m.s. speed is $\sqrt{3} / 8$ times the speed of sound, in that medium.
13.(a) What is entropy of a thermo-dynamic system?
(b) 100 g water at $60^{\circ} \mathrm{C}$ is mixed with 30 g of water at $20^{\circ} \mathrm{C}$. Calculate the entropy change of the system.

GROUP-C

Answer any two questions from the following

14.(a) What is the difference between a heat engine and a refrigerator? 2
(b) Prove that $\eta=\frac{1}{1+\omega}$, where η is the efficiency of heat engine and a is the coefficient of performance of refrigerator.
(c) "The lowering of sink temperature $\left(T_{2}\right)$ is more effective in increasing the efficiency of a Carnot engine."
Explain the above observation.
(d) A reversible heat engine converts $1 / 6$ th of the heat input into work. If the temperature of the sink is reduced by $62^{\circ} \mathrm{C}$, its efficiency is doubled. Find out the temperatures of the source and the sink.
15.(a) Explain the ultraviolet-catastrophe in Rayleigh-Jeans spectral distribution.
(b) Write down Planck's law of radiation. Derive the Rayleigh-Jeans law and Wien's displacement law from Planck's law.
(c) Calculate the wavelength of light corresponding to the maximum in the spectral distribution of the sun. Assume that the sun radiates with properties of a blackbody radiator at 600 K .
16.(a) Calculate the Fermi-Dirac distribution function from the Fermi-Dirac statistics.
(b) Calculate the lowest energy of a system of 10 identical particles in a cubical box of side L, using
(i) Boltzmann-Einstein statistics.
(ii) Fermi-Dirac statistics.
17.(a) Derive the velocity distribution function for a gaseous system that obeys the Maxwell-Boltzmann statistics.
(b) N particles are distributed among three energy states $E_{1}=0, E_{2}=k T, E_{3}=2 k T$. If the total energy of the system is 200 kT find out the value of N.

